Fundusze Unijne
Publications in year 2013

Vol. 20, Issue 4



Influence of spray drying conditions on beetroot pigments retention after microencapsulation process

International Agrophysics
Year : 2013
Volumen : 20
Issue : 2
Pages : 343 - 356
  PDF 2 MB
Authors: Emilia Janiszewska1, Joanna Włodarczyk1

1Department of Food Engineering and Process Management, Faculty of Food Science, SGGW – Warsaw University of Life Sciences ul. Nowoursynowska 159C, 02-776 Warszawa
Abstract :

In food colorants microencapsulation process, apart from appropriate carrier selection, the determination of the spray drying parameters which can affect the retention of active ingredients is essential. The aim of this study was to investigate the effect of drying parameters on beetroot pigments retention after microencapsulation. Raw material used in the study was the 100% beetroot juice. Low-crystallised maltodextrin DE=11 (MD) was used as the carrier. To obtain 30% dry matter concentration in the solution, the proper amount of maltodextrin was added to beet root juice with 15% of dry matter. Drying was carried out in a spray-drier at disc speed of 39,000 rpm and solution flux rate of 0.3·10-6 and 0.8·10-6 m3 s-1. The inlet air temperature was 120, 140 and 160oC, at a constant air flow rate of 0.0055 m3 s-1. Before drying, viscosity and density of the solutions were measured. Dry matter content, apparent density, loose bulk density of the powder, and porosity were determined. The particle morphology was tested as well. Pigment content was measured by Nillson (1970) and Von Elbe (2001) methods to determine the efficiency of encapsulation. The viscosity and density of solutions of beet juice with maltodextrin was 3.86 mPa s and 1100 kg m-3, respectively. In both cases, the values of viscosity and density were higher compared to the raw juice. Increase of solution flux rate caused a decrease of dry matter content, apparent particle density and loose bulk density. Increase of inlet air temperature caused an increase of dry matter content, average diameter and a decrease of both densities. It was observed that the increase of inlet air temperature caused a decrease in the yellow pigment to a higher degree (47%) than in the violet pigment (17%). However, no clear correlation was observed for violet pigment. There were no changes in porosity and shape factor. The obtained microcapsules were sphere-like in shape, with numerous deep cavities. In the whole experiment the retention of beet root pigments was in the range of 26.7-29.3%.

Keywords : microencapsulation, morphology of powders, betalain pigments, density of powders
Language : English